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Abstract

We have applied Resonant Recognition Model (RRM) to computationally analyze HIV
proteases with the aim to predict functionally important amino acids. We compared predict-
ed hot spots and simulated single mutations with experimentally tested mutations and we
found significant correlation. In this way we also predicted a number of key amino acids
that have not yet been experimentally tested and as such could bring new mutants with
desired functionality.

molekularno modeliranje, funkcionalne
mutacije

INTRODUCTION

Human Immunodeficiency Virus (HIV) protease (PR) is
one of the three enzymes found in the HIV virus. This
enzyme cleaves newly synthesized polyproteins to create the
mature protein components of an infectious HIV virion.
Without effective HIV protease, HIV infection is not possi-
ble. This explains why protease inhibitors are an important
class of antiretroviral drugs: by year 2007, 10 out of 25 anti-
HIV agents licensed for clinical use were protease inhibitors
(saquinavir, ritonavir, indinavir, nelfinavir, amprenavir,
lopinavir, atazanavir, fosamprenavir, tipranavir and
darunavir) (1.

PRs, however, are highly adaptable and mutating quick-
ly into variants with several hundred times less affinity for
the inhibitor and still retaining significant proteolytic activi-
ty.

HIV protease has been described in detail in the frame-
work of classical molecular biology approaches, as well as
from the viewpoint of bioinformatics (-4). As result, the
three-dimensional structure, the active centre as well as the
minimal core of amino acids that has to remain unchanged
in any viable enzyme have been determined.
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On the other hand, a great deal of experimental data
about the effect of different single-point and multiple muta-
tions upon catalytic activity and inhibitor affinity has been
published (5-21),

Taking into account the formidable difficulties associat-
ed with HIV/AIDS therapy it is necessary to explore the new
innovative approaches. One of such innovative approaches
is Resonant Recognition Model (RRM) (22-31),

This approach has been applied to the study of many
enzymes and proteins and has been capable of theoretically
predicting aspects of the functional “key” amino acids in a
sequence (hot spots) as well as the design of new protein
inhibitors.

As early as 1994, Cosic used the Resonant Recognition
Model for the characterization of HIV envelope proteins (26),
which are important participants in the process of recogni-
tion of CD4 cells by the HIV virion (1-32),

We hypothesize that the RRM approach can be also use-
ful for characterizing important aspects of HIV protease. It
is not excluded that, given its sound theoretical framework,
some unknown facts about HIV_PR can be understood and
the way for new approaches in HIV/AIDS therapy can be
paved.
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In this work we identify the main RRM characteristic
resonant frequencies of retroviral proteases. The ,key”
amino acids (hot spots) are identified through direct predic-
tion as well as through the effect of some point mutations.
Finally, data are compared with experimental data reported
in literature and significant correlation was found.

METHODS

Resonant Recognition Model

The RRM is a physico-mathematical approach that inter-
prets protein as univariate numerical sequences upon which
digital signal processing methods are applied (26-29), The
RRM postulates that protein (DNA) interactions entail a
mechanism of resonant energy transfer between the interact-
ing molecules at the frequency specific for each observed
function/interaction. Within this model, the protein primary
structure is represented as a numerical series by assigning to
each amino acid in the sequence a physical parameter value
relevant to the protein’s biological activity. Through using
the RRM, it has been hypothesized that there is a significant
correlation between spectra of the numerical presentation of
amino acids and their biological activity. It has been found
that proteins with the same biological function have a com-
mon frequency component in their numerical spectra. This
frequency is considered to be a characteristic feature of a
protein’s biological function or interaction. The RRM proce-
dure involves two stages of calculations.

First, the original amino acid sequence is transformed
into a numerical sequence by assigning to each amino acid a
particular value of the physical parameter relevant to a pro-
tein’s biological function. Here, the energy of delocalized
electrons (calculated as the electron—ion interaction pseudo-
potential), EIIP 29 of each amino acid residue is used. The
EIIP parameter describes the average energy states of all
valence electrons in a particular amino acid. The EIIP values
for each amino acid were calculated from the general model
of pseudo-potentials:

(& + glwi[) = o.zsw

where q is a change of momentum k of the delocalized
electron in the interaction with potential w, and

being Z; is the number of valence electrons of the i-th

atom of each amino acid and N is the total number of atoms
in the amino acid. Thus, the resulting numerical series rep-
resents the distribution of the free electron energies along
the protein. The numerical sequences obtained are analyzed
using Fourier Transform (FFT) to extract information perti-
nent to the biological function. As the average distance
between amino acid residues in a protein sequence is about
3.8 A, it can be assumed that the points in the numerical
sequence derived are equidistant (the analog of an equisam-
pled time series). For further numerical analysis, the dis-
tance between points in these numerical sequences is set at
an arbitrary value: d=1. Peak frequencies in the amplitude
cross-spectral function define common frequency compo-
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nents of the two sequences analyzed. In order to determine
the common frequency components for a group of protein
sequences, we have calculated the values of multiple cross-
spectral function coefficients, Mn which is defined as fol-
lows:

Mn|=X1n|.|]X2n|...XMn| n=1,2,...,N/2

where n is the number of cross correlated proteins, Mn
represents the n-th spectral component in the cross-spectral
function and Xk,n is the n-th spectral component of the k-th
protein. Peak frequencies in such a multiple cross-spectral
function denote common frequency components for all the
sequences analyzed. The multiple cross-spectral functions
for a large group of sequences with the same biological func-
tion has been named ‘consensus spectrum’. The presence of
a distinct peak frequency in a consensus spectrum implies
that all of the analyzed sequences within the group have one
frequency component in common. This frequency is related
to the biological function provided the following criteria are
met:

(1) One peak only exists for a group of protein sequences
sharing the same biological function.

(2) No significant peak exists for biologically unrelated
protein sequences.

(3) Peak frequencies are different for different biological
functions.

In previous research (22 33-38) the above criteria have
been implemented, and the following fundamental conclu-
sion was drawn: each specific biological function of a given
protein or DNA is characterized by a single frequency. Our
previous research showed that proteins with the same bio-
logical function have a common frequency in their numeri-
cal spectra, and each specific biological function of a protein
or regulatory DNA sequence(s) is characterized by a single
frequency (39). The results of previous studies with a number
of different protein families revealed that proteins and their
interacting targets (receptors, binding proteins and
inhibitors) display the same characteristic frequency in their
interactions. However, it is obvious that one protein can par-
ticipate in more than one biological process, i.e. revealing
more than one biological function. Therefore, it has been
postulated that the RRM frequency characterizes a particu-
lar biological process of interaction between selected bio-
molecules. Thus, the RRM characteristic frequencies repre-
sent a protein’s general functions as well as the mutual
recognition between a particular protein and its target
(receptor, ligand, etc.). As this recognition arises from the
matching of periodicities within the distribution of energies
of free electrons along the interacting proteins, it can be
regarded as the resonant recognition.

Once the characteristic frequency for the particular bio-
logical function or interaction is determined, it becomes pos-
sible to identify the individual “hot spot” amino acids that
contributed most to this specific characteristic frequency and
thus, possibly to the observed biological behavior of the pro-
tein. These ,.key” amino acids are found to be clustered in
and around a protein’s active sites.

In this work we applied RRM to the following sequences
which have been downloaded from SwissProt databank:
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>sp|P27973|512-612 Simian Immunodeficiency Virus (MAL)
>sp|P05895(516-616 Simian Immunodeficiency Virus (TYD)
>sp|Q02836|505-607 Simian Immunodeficiency Virus (AGM)
>sp|P12502]502-597 Simian Immunodeficiency Virus (SM)
>sp|P05897|501-596 Simian Immunodeficiency Virus (KBW)
>sp|P24107|513-611 Human Immunodeficiency Virus (CAM2)
>sp|P03366/501-599 Human Immunodeficiency Virus (BH1D)
>sp|P05961]495-593 Human Immunodeficiency Virus (MN)
>sp|P04588494-592 Human Immunodeficiency Virus (MAL)
>sp|P26315|1-124 Bird (Endogenous Retroviral sequence)
>sp|P04024|1-314 Monkey (Endogenous Retroviral sequence)
>sp|P11365|690-765 Mouse (Endogenous retroviral Sequence)
>sp|P10265]21-96 Human (Endogenous retroviral sequence)
>sp|POCT34|266-342(q05654) Schizosaccharomyces pombe
(Endogenous Retroviral sequence)

>sp|P35956|1-135 Visna virus

>sp|P23427|1-139 Visna virus

>sp|P16088|1-154 Feline Immunodeficiency Virus
>sp[P19560| [BIV]Bovine Immunodeficiency Virus

Hot spots determination

By identifying the characteristic frequency of a particu-
lar protein, it is possible to predict which amino acids in the
sequence predominantly contribute to the frequency and
consequently to the observed function (23. 26, 28, 29) " Since
the characteristic frequency correlates with the biological
function, the positions of the amino acids that are most
affected by the change of amplitude at the particular fre-
quency can be defined as hot spots for the corresponding
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The amino acids in the new sequence that differ from the
original ones reside at the points most contributing to the
frequency. These hot spots are related to this frequency and
to the corresponding biological function.

Mutation simulations

Point mutations:

To theoretically explore the contribution of each amino
acid to the amplitude of a resonant peak at a given position
the given amino acid was changed to leucine (EIIP=0) or to
aspartic acid (EIIP=0.12630). If the EIIP of the given amino
acid is lower than 0.07 the mutated amino acid is aspartic
acid, otherwise, if the original amino acid’s EIIP is higher
than 0.07 the mutated amino acid is leucine (EIIP=0.0).
Relative amplitude change (no change=1.0) is estimated for
each amino acid at the given resonant position.

Other mutations:

To compare experimentally reported results with theoret-
ical predictions, peak amplitudes were obtained from the
reported mutated proteases.

RESULTS

Resonant frequency identification

The cross-spectrum for the 18 retroviral protease sequ-
ences is presented in Figure 1. As apparent, a very prominent
peak appears at £=0.0586+0.004.

With the four HIV proteases, the most prominent peak
appears at £=0.1797+0.004 as presented in Figure 2.

biological function.

The strategy for this prediction
includes the following steps:

1. The unique characteristic fre-
quency for the specific biological fu-
nction is determined by multiple
cross-spectral analyses for the group
of sequences with the corresponding
biological function.

2. The amplitude is altered at this
characteristic frequency in the particu-
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Figure 1: Consensus RRM spectrum of 18 retroviral protease showing the prominent com-

mon frequency at f=0.0586+0.004.

acteristic frequency.

3. A numerical sequence from the
modified spectrum is derived using
Inverse Fourier Transform (IFT). It is
known that a change in amplitude at
one frequency in the spectrum causes
changes at each point in the numerical
sequence. Thus, a new numerical seri-
es is obtained where each point is dif-
ferent from those in the original seri-
es. Detecting the amino acids corre-
sponding to each element of this new
numerical sequence can then be
achieved using tabulated values of the
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Figure 2: Consensus RRM spectrum of 4 HIV protease showing the most prominent peak at

S=0.1797%0.004.
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Combining Simian (SIV) and Human (HIV) proteases
revealed two peaks at 0.0586+0.004 and 0.1797+0.004 as
presented in Figure 3, but SIV proteases alone exhibited one
peak at 0.0586+0.004.
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Figure 3: Consensus RRM spectrum of 4 HIV protease and 5 SIV protease showing
two prominent peaks at 0.0586+0.004 and 0.1797+0.004.

As it can been seen from the table above there are some
agreements with already experimentally proved “key” muta-
tions. However, there are number of predictions which still
need to be experimentally tested and might have a signifi-

cant effect on protease activity.

Effect of ,,strong” mutations at each
amino acid

As described in the ,,methods” section,
we simulated mutations that change an
amino acid with low EIIP value for an
amino acid with high EIIP value. Even
when this does not correspond to the whole
repertoire of possible mutations, it can give
an exploratory idea of the effect of muta-
tions upon the resonant peak amplitude. The
effect of ,,strong” mutations at each of the
amino acid upon amplitude at
=0.0586+0.004 is presented in Figure 4.

Thus, the presence of prominent peaks at|™®

=0.0586+0.004 and f=0.1797+0.004 appear to charac-

terize different subsets of retroviral proteases.

Particularly, the peak at 0.0586+0.004 is shared by all

retroviral proteases, and the peak at 0.1797+0.004 seems

to be more specific for HIV and SIV proteases together. | 1
As an interesting fact, in 1994 Cosic found a peak at |0 |

0.1855+0.004 for HIV envelope proteins. This frequen- |08

cy could be considered overlapping with the frequency

obtained here for HIV proteases (within the digitaliza- |o.6

tion error). Thus the peak at 0.1797+0.004 seems to be 4 o
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associated to specific HIV activity. In following sections
we will try to provide support for this idea (26),

Figure 4: The effect of ,,strong” mutations at each of the amino acid
upon amplitude at f=0.0586+0.004.

Hot spot analysis 1.4

Hot spot analysis as described above was applied to | 13 -
HIV Cam2 protease using both 0.0586+0.004 and | ,,
0.1797+0.004 frequencies. The analysis is performed for | |,
both increasing and decreasing the amplitude at these | |
two frequencies and the six most relevant mutations are -
chosen for each of changes. Mutations related to .
decreasing the amplitude are supposed to be related to |
decreasing of the relevant function while mutations N
related to increase of the amplitude are supposed to be | *° s = !
related to increase of the related biological function. The
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100

results are presented in the Table 1 below.

Table 1: Representing “hot spot” amino acid predictions for
two different relevant frequencies 0.0586+0.004 and
0.1797+0.004 for increase and decrease of amplitude on these

frequencies.
Frequency % of Predicted | Predicted | Predicted | Predicted | Predicted | Predicted | Expectedeffect
change | mutation | mutaion | mufation | mutation | mutation | mutation
agreement | agreement | agreement | agreemenl | agreement | agreement
with with with with with with
experiment | experiment | experiment | experiment | experiment | experiment
0.0586+0.004 | 35 176 356 496 516 526 666 Decrease of
yes yes yes proteolytic activity
0.0586+0.004 | +56 276 396 53F 786 B3F UG Increase of
yes proteolylic ackivity
01707+0.004 | -35 176 216G 396 496 L 946 Decrease of HV
yes related activity
01797+0.004 | +48 356 435 516G 526 68G B6G Increase of HIV
| yes yes related activity

Figure 5: The effect of ,,strong” mutations at each of the amino acid
upon amplitude at =0.1797+0.004.

As noticed, amino acid single substitutions can lead to
either increases or decreases in the peak’s amplitude at the
frequency associated to protease activity. Indeed, 54
percent of mutations reduce the amplitude of the res-
onant peak at 0.0586+0.004.

We hypothesize that this can be relevant to the
high adaptability of proteases under the pressure of
inhibitors: a repertoire of mutations where combina-
tion of proteolytic activity and proteolytic inhibition
will allow reduced affinity to inhibitors with no
severe compromises for proteolytic activity.
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In Figure 5 a similar result is shown for the effect on
amplitude at peak at f=0.1797+0.004. Similarly, 48 percent
of mutations reduce the amplitude of the resonant peak at
0.1797+0.004.

Comparing theoretical predictions with experimental

reports

We found in literature indications on how at some point
mutations affect the catalytic activity. We compared these
results from theoretical predictions from Figure 4. and these
comparisons are summarized in Table 2.

Thus, from 28 documented single-point mutations, cor-
respondence between theoretical prediction and catalytic
activity has been confirmed for 26 of them (93%). This gives
strong support to the validity of RRM for the study of HIV
proteases.
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CONCLUSION

We have applied here Resonant Recognition Model to
analyze HIV proteases with the aim to find out their charac-
teristic function related features (frequencies) and conse-
quently to predict and analyze ,.key” amino acids and relat-
ed mutations. Our study revealed that HIV protease exhibits
two RRM resonant peaks, one peak at f=0.0586+0.004 is
likely to be associated to proteolytic activity, whereas the
peak at £=0.1797+0.004 might be associated to HIV specific
interactions of the protease. This is supported by the similar-
ity between this frequency and that reported by Cosic (1994)
(26) for HIV envelope proteins. In favor of the former are
data from activity reported for different point mutations in
Table 2.

Using these RRM characteristic frequencies then we
were able to investigate influence of particular amino acids
to each of these characteristic frequencies. This can lead to
functional mutations that can either increase or decrease the

Table 2: Summary of comparisons between “strong” mutations and experimentally tested mutations.
Mutations in red denote decreased activity, mutations in green denote increase activity, while muta-
tions in purple denote reduced catalytic activity.

AA Amplitude change| Experimental report (reference) Agreement
position | (no change=1)
84 0.6524248 Catalytic efficiency reduced ©) Yes
50 0.6677426 Decreased Catalytic efficiency (©) Yes
51 0.6765125 Decreased catalytic efficiency (7) Yes
25 0.6780 Inactive (2) Yes
35 0.6887 May reduce catalytic efficacy (®) Yes
82 0.7360055 Lower catalytic activity (9 Yes
26 0.7504616 Crucial for catalysis (10) Yes
49 0.7536639 Inhibited HIV infectivity (11) Yes
26 0.7504616 Inactive (12) Yes
8 0.773679 Lower activity (13) Yes
76 0.7803 Unstable and slow auto processing (14) Yes
32 0.7871999 Kcat reduced ) Yes
86 0.7956613 Defective catalytic activity (10) Yes
48 0.8565207 From 50 to 80% of wild type (13) Yes
54 0.9074061 Decreased catalytic efficiency (7) Yes
A28S 0.9738727 Catalytic activity reduced %) Yes
10 0.9786019 Mutation appears to be silent in growth

characteristics (16) Yes
63 1.0005 As fit as Wild type (17) Yes
88 1.0519193 Lower catalytic activity,

slower viral growth (16) No
80 1.0533545 Comparable to the wild protease (18) Yes
87 1.121996 Reduced catalytic activity (10) No
46 1.1320 Higher activity than wild type (13) Yes
37 1.1349886 Catalytic efficiency falls (12) Yes?
7 1.170872 Enhanced (19) Yes
45 1.1751233 Up to 110% activity increase (13) Yes
90 1.3142611 Relative Kcat between 1.2 and 1.6 (20) Yes
55 1.0519193 A role in enhancing viral replication 21 Yes
53 1.1949737 Catalytic efficiency increased (7) Yes
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Figure 6: The upper line is predictions and experimental single
spot mutations kept in colors red, green and purple as per Table
2. In the lower line are hot spot predictions as per Table 1. all
highlighted in yellow.

proteolytic and/or HIV specific activity. We have shown that
there is significant correlation between already experimen-
tally tested mutations and characteristic frequency peak val-
ues. These results are summarized in the Figure 6. below
where single point mutations both predicted and experimen-
tally tested as per table are highlighted in HIV Cam2
sequence (first line). Hot spots predicted with inverse RRM

where highlighted in yellow in second line. It can be
observed that all these predictions are clustered around con-
served regions in the HIV Cam?2 sequence.

We have shown here once again that Resonant
Recognition Model can identify functionally relevant fea-
tures (frequencies) within the protein primary structure and
consequently successfully predict functional mutations.
Such computational procedure can significantly lower the
time and expense for design of new, mutated proteins and
peptides with the desired function.
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Sazetak

U ovom radu smo primenili Model Resonantnog Prepoznavanja (RRM) u kompjuterskoj
analizi HIV proteaza sa ciljem da predvidimo amino kiseline koje su vazne za njihovu
biolosku funkciju. Uporedili smo “hot spot” i simulirane predikcije sa eksperimentalno
testiranim mutacijama i dobili znacajno slaganje. Takode smo predvideli i amino kiseline
koje jo§ nisu eksperimentalno testirane, a mogle bi da budu znacajne za moguce

funkcionalne mutacije.
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